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Colored-noise-induced chaotic array synchronization

M. N. Lorenzd and V. Peez-Muruzuri'
Group of Nonlinear Physics, Faculty of Physics, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
(Received 14 October 1998; revised manuscript received 25 March 1999

The effect of a time-correlated Gaussian noise on one-dimensional arrays consisting of diffusively coupled
chaotic cells is analyzed. A resonance effect between the time scale of the chaotic attractor and the colored
Gaussian noise has been found. As well, depending on the number of cells, coupling, and noise strength, an
improvement of the synchronization or a poor synchronization between cells within the array can occur for
some values of the time correlation. These nonlinear cooperative effects are studied in terms of a linear
stability analysis around the uniform synchronized behay®1063-651X99)02109-1

PACS numbegs): 05.45—-a, 05.40-a

I. INTRODUCTION On the other hand, the behavior of uncoupled chaotic sys-
tems under the influence of external noise has been the sub-
The behavior of nonlinear dynamical systems in the presject of recent wor{25-32. The main idea behind this re-
ence of small perturbations and noise has been the subject arch is that uncoupled chaotic systems cannot be
numerous and extensive studies. In particular, the dynamicsynchronized by means of an identical noise sig@duss-
of chaotic systems depends sensitively on tiny perturbationi&n noise of zero meanexcept for a noise with some non-
of the initial values. Then, perturbations can be added in &ero bias.

controlled(control theory[1,2]) as well as uncontrolled way  In this paper, the role of a time-correlated Gaussian noise
as is the case in the presence of ndiseise-induced chaos in diffusively coupled chaotic cells is analyzed. In recent
[3,4], stochastic resonan¢&—8)). times, white noise has been replaced by colored noise in a

Noise can play a constructive role in the detection ofvariety of contexts. The noise color significantly enriches the
weak periodic signals via a mechanism knowrstechastic ~ fluctuation dynamics, particularly where the characteristic
resonanceIn essence, stochastic resonance is a further recorrelation time of the noise is not small compared to the
markable nonlinear cooperative phenomenon, in which théme scale of the systeii83,34. Laser noise problems5]
signal-to-noise ratio of a periodically modulated system carnd first passage problerf86] are some examples that have
be amplified by the addition of external noise. Nonlinearb€en shown to necessitate the use of colored noise instead of
cooperative effects between periodic and random perturbavhite noise. On the other hand, for nonlinear dynamical sys-
tions may imply that incoherent noise leads to a coherentems without periodic external force parametrically per-
output signal(e.g., in ring laser$9]). Now, this effect has turbed with colored noise, a nonmonotonic behavior of the

been reported in a wide variety of physical systda-13,  coherence in the system response was observed as a function
and biology[14—-16. of the noise correlation time, while no coherence enhance-
More recently, the presence of noise in ensembles of chanent was measured when the noise amplitude was varied
otic systems has been studied as a function of the coupling7,38. Our aim in this paper is to investigate the nonlinear
strength among systems. For coupled chaotic systems, whif@operative effects of noise strength, correlation time, and
Gaussian noise can be used to control spatiotemporal chatgth scales to control spatiotemporal chaos in coupled ar-
[17-20. In particular, the termarray-enhanced stochastic rays of chaotic cells.
resonancewvas recently introduced by Lindnet al. [21] to
describe spatiotemporal stochastic resonance in a numerical Il. MODEL
model of coupled, bistable oscillators. They derived scaling . . . . -
laws for the optimum noise intensities and coupling strengths,. In our simulations, a or)e-dlmen5|onal array, consisting of
resulting in an optimization of the signal-to-noise ratio as adlffuswely coupled chaotic cells of the Lorenz type, was
function of the number of oscillators. As a clear example ofused,
these studies, chaotic behavior in spatially extended systems, %= aly, —x)
especially in biology and physiolod22—24, might be ame- ! oo
nable to control, as it is the case in low-dimensional c_haotlc Vi=[R+&(D]X—Y; =X 2+ D(yj s 1Y 1-2Y)),
systems. This control eventually leads to the formation of (1)
regions whose chaotic cells are synchronized to each other,
giving rise to spatial patterns or clusters that interact with 'zJ:xJ- yj—bz,
each other with time.
with «, R, andb positive parameterf39]. Usual parameter
values area=10, b=%, and R=28. By keepinga and b

*Electronic address: nieves@fmmeteo.usc.es constants while varyin@, it is possible to simplify the linear
"Electronic address: vicente@fmmeteo.usc.es; http://fmmeteo. stability analysig40] which will be useful later in the dis-
usc.es cussion. The origin is stable faR<1. At R=1 the origin
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loses stability by a supercritical pitchfork bifurcation, and acorrelated noise. In the Appendix, the linear stability analysis
symmetric pair of attracting points is born. Rt,=24.74 the performed to calculate the transverse Lyapunov spectrum is
fixed points lose stability by absorbing an unstable limitdepicted.
cycle in a subcritical Hopf bifurcation and the nonlinear set
becomes a strange attractor.

In Eqg. (1), D accounts for the coupling diffusion coeffi- Ml RESULTS
cient between cellg,runs from 1 toN (number of cells in the The main effect of a colored Gaussian noise on an array
array), and &(t) is a colored Gaussian noise of zero meanof diffusively coupled chaotic Lorenz systems is shown in
whose dynamics is given by Figs. 1 and 2. Results are shown separately for Idegl. 1)
) and globalFig. 2) noise, as a function of the time correlation
E=—1 e T g (D). (2 7, number of cells in the array, and coupling strength. For

] ] . low values of the diffusionupper rows in Figs. 1 and)2
The Ornstein-Uhlenbeck stochastic proceds) [41] is  independently of the specific values, the dependendeaf
driven by the white Gaussian noigg(t) with (£,(1))=0 s equivalent for all the arrays considered;rds increased,
and (£,(t) £w(t"))=2A (t—t'). The correlation function 5 maximum ofK is observed at= g, and for r—, K

of £(t) is an exponential function given by tends toK, (i.e., the value oK obtained for the same array
A CJt-t] without considering the presence of_ nOisﬁhe only_ effect
(£(t) &(t))= —exr{ _) (3)  of the global or space-correlated noise in comparison to the
T T local noise is to attenuate the curve near the maximum at

=7&. Note as well that foN=20 andN=100, the maxi-
mum value ofK is approximately the same but greater than
that measured foN=4. SinceK measures thelegreeof
synchronization between cells, aid—K, is greater than
zero, the effect of noise for low values Dfis to deteriorate
the synchronization, at least within the range of values of
nearrg.

On the other hand, for high values of the coupling

wherer is the correlation timeA is the noise amplitude, and
o=+/Al7is the noise dispersion. In the limit- 0 the white-
noise limit ¢,(t) is recovered.

We emphasize here two cases; incohereriboal noise
where the noise is uncorrelated from site to site, gludbal
noise where the noise is identical at each di&]. In this
work, noise is added to the control paramd®aesulting in a

mhultlprl:catlve.”corr]]tnbur?on to the evfolutlpn ?aqulatlons]; Al- strength(lower rows in Figs. 1 and)2the effect of the col-
though we will show the existence of optimal values of Cou-eq Gaussian noise on arrays consisting of chaotic cells is

pling strength and color noise that lead to an improvement o he opposite to the one described above. That isy s

to a worsening of the synchronization between chaotic Ce”ﬁncreased< diminishes, later increases near 75, again it
we expect that this behavior can also be found when noise iaecreases for> 7 a,nd finally attains a coil,stant value
R

ad(IjEed t?. thelsystem Ina @ffﬁre_n: Wayt. d usi licit equal toKg. As N increases, the maximum value Kfalso
quation(1) was numerically integrated using an explici increases, leading to a global displacement of the curve to-

Eu(ljer mgtgpdbwithgtime sts_;z_ of 10. Free enq(ﬁzer(()j ﬂ_ﬁfﬁ wards positive valuegsee, for example, the figure fa
an p?.r"ﬁ Ic oulnt adry con ![IOI’]S were cqns||| erel ’ | tedex-: 100), althoughrg was not found to depend dx As well,
gfggtrzlhlE}Si%/ejzck;)yrraenairiegglsﬁl(gu))r\il'\uﬁi gtggéftae dybC; cu ale as described above, the main effect of the correlated noise is
[43] instead of solving Eq(2). Random initial conditions for to damp and smooth the curve near the valueaf

all variables were given to each cell in the arra In the same way, the two limits—0 and 7—c are
given - equivalent for both cases; local and global noise. When
In order to characterize thdegreeof synchronization be-

tween cells of the arrav. we ntroduce the followin time-_>0’ the white Gaussian noise limit is recovered and cells
" Y, 9 within the array do not become synchronized to each other
averaged quantity:

independently of the variance of the noig@2]. Only the

T ) coupling diffusion term allows to some extent the synchro-

N
1 1
K=I|mf2 (_N_ljzz

T—o t=1

l]jt_l]jt_l (4) nization among the different units in the array. Similarly,
when 7—o the termé(t) in Egs.(1) behaves as a constant
R value different for each cell. Noise affects the strange attrac-
with u=(x,y,z) and|-|| represents the Euclidean distance.tor dynamics that becomes asymmetric, while no synchroni-
This function is positive defined and it is equal to zero whenzation is observed between cells within the array. For high
all the cells in the array are globally synchronized.idmay  enough noise amplitude, the main effect will be a biased
serve as a measure of the array complexity, in this context isignal that will induce a regularization in the system. This
can be related to the Kolmogorov-Sinai entrggy]. Nu-  effect is analogous to that of some chaos suppression meth-
merical simulations were run untl varied less than 5%. ods that can achieve this result through perturbations in the
In the same context, in order to analyze the behavior obystem variablef45].
the array under the presence of noise, it is possible to calcu- The effect of the periodic boundary conditions on arrays
late the transverse Lyapunov exponents corresponding to the diffusively coupled chaotic cells forced with colored
transverse perturbation to the synchronized manifold. NeverGaussian noise is analyzed in terms of the highest Lyapunov
theless, while this spectrum can be easily calculated for apxponent\(q) calculated from Eq(A3). Figure 3 shows a
array with periodic boundary conditions forced with corre-three-dimensional plot of the highest transverse Lyapunov
lated colored noise, this is not the case for an array with freexponent\(g,7) as a function of logyr and the reduced
ends or an array consisting of cells forced with local or un-wave numbeg=k/N for D=0.5. Note that for any value of
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FIG. 1. Dependence df — K, as a function of logyr for different values of the coupling diffusion coefficiebtand number of chaotic
cells N within the array. Local or uncorrelated noise is herewith considefigt),# ¢;(t) V i,j=1, ... N. Parameter values:=3 and free
ends were considered in the integration of EL.

log;or, A(q) is symmetric with respect to the lirg=1/2 as By varying the coupling diffusion coefficient between
described in the Appendix. On the other hand, for any valughaotic cells, the value afthat corresponds to the maximum
of g, the behavior oh (7) is equivalent to the results shown of K, 7z, decreases with increasirig for a constant noise
in Fig. 2 obtained with Eq(4); i.e., a maximum of\(7) dispersion as is shown in Fig. 5. For—0, no improvement
occurs for somerg. The function\(q,7) crosses the zero or worsening of the synchronization between cells was found
line (shown as a plane in Fig.)3o become negative for for any value ofr (K remains approximately constantn
some valuesy, and 7.. The wave number, signals the agreement with Ref$25-32. Besides, the maximum value
instability of the ring, and the lowest possible valuehofor ~ of K was found to linearly decrease Bsncreases. The same
which thek=N ¢, condition can be fulfilled is fok=1. As  behavior ofrg(D) for a small number of circuits in the array
k is an integer variable, this implies that the critical size ofshown in Fig. 5 was found for greater valueshf
the ringN. is defined by the lowest for whichN,g.=1 for Near the onset of resonancei, the dynamics of the
some time correlation,. Thus, for some discrete values of array could be simplified to that of a chain of linearly
q. (see Table)) there exists a minimum value, for which ~ coupled oscillators, forced periodically with a frequency
\(q,7) is negative, and the dynamics of the array bifurcatequal to 7", whose dynamics is described in terms of a
from a nonsynchronized state to a synchronized one. As dglane wave solution. The wave frequeneyand coupling
scribed above foK(7), at the limit 7—o, A(q,7)—N\(q,7  diffusion coefficient are related through the wave dispersion
—0). equation,we D/, with X the wavelength. For small size
Figure 4 illustrates the behavior Bf— Kq as a function of  arrays, it can be considered thatis fixed by the boundary
the noise dispersior and time correlationr for a given  conditions and then it remains constant. This is in agreement
length of the array and coupling diffusion. Note that inde-with our simulations where we have found that=1/{/D
pendently of the value obr, the curve shape is kept un- independently of the length of the array. Obviously, the ex-
changed like the ones described above, with a single peghilanation above is a simplification of the problem, since the
that develops around= 75 (see the profiles o0K—Kgy ob-  chaotic dynamics cannot be mapped in a simple way to that
tained for different values aof as a function ofr). The role  of an oscillator. Nevertheless, our aim is to stress the simi-
of o is to increase the maximum value Bf—K, and to larity between the classical frequency locking problem that
make wider the peak arountk. Then, no stochastic reso- occurs in a chain of oscillators forced periodically and the
nance effect was found as the noise amplitude is changdsehavior ofK for 7=~ 5. Here, the locking does not occur
[37,38. As o increases, larger values of are needed in for a single value of the frequency, but for a range of fre-
order forK to relax toward,. quencies that gives rise to a wide behavioKddis a function
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FIG. 2. Dependence df — K as a function of logyr for different values of the coupling diffusion coefficieBtand number of chaotic
cellsN within the array. Global or space-correlated noise is herewith considg(epk=§;(t) V i,j=1, ... N. Parameter values:=3 and

free ends were considered in the integration of @gj.

of 7 near the onset of resonance.

The influence of the bifurcation parameteron the pre-
vious results is shown in Fig. 6. Since noigg) is added to
R in Eq. (1), the selected value dR should influence the
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observed dynamics the closer this value is taken to the bifur-
cation point atR=R,. Thus, from the three-dimensional
plot of K—K, shown in Fig. 6a), it is possible to note that
asRis increased, the functiod(r) shows a global displace-

FIG. 3. Three-dimensional
plot of the highest Lyapunov ex-
ponent\ as a function of time
correlation loggr and the reduced
wave numberg=k/N. The func-
tion N(q,7) crosses from positive
(nonsynchronized state¢o nega-
tive (synchronized staj€for some
critical values7, andq.. Param-
eter values:oc=3 and D=0.5.
Global noise was considered.

l0g,5(0)
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FIG. 4. (a) Three-dimensional plot d — K as a function of noise dispersienand time correlation- and (b) sections of this plot for
constant values of. Uncorrelated noise and periodic boundary conditions were considered. Parameter Nal@€sandD = 2.0.

ment towards positive values, then deteriorating the chaotido clarify this resonance effect, the noise term in the evolu-
synchronization between cells. This effect is more clearlytion equation fory of the Lorenz system, Ed1), has been
shown in the profiles shown in Fig(l® for constant values modified in the following way:

of R. Finally, Fig. c) shows the nonmonotonic behavior of )

K—K, as a function ofR for log;q7= —4, when the white Yi=ROX=yj=%Z+D(Yj41tyj-1—2Yy), ()
Gaussian limit is recovered. The dependenceofind the

maximum value oK =K., With the bifurcation parameter _ 2t

R is shown in Fig. 7. The inset shows the calculated values R(t)= R+0005{—,+ b
of the mean oscillation period for a single Lorenz cell T
calculated after a linear stability analysis was performed. In _
both casesyg and T decrease with increasing valuesRf  where the values of the amplitude and period7’ of the

, (6)

while K2« increases withR. periodic forcing are equivalent to the noise dispersioand
time correlationr in Eq. (3). ¢; is an initial random phase
IV. DISCUSSION which is different for each cell in the array, or equal for all

cells depending on whether local or global forcings are con-
Clearly, two effects have been describéd; a locking  sidered.

between the characteristic frequency of the oscillator and the Figures 8a) and 8b) show the dependence &—K,
time correlation of the noise that is shown as a maximum fowith the forcing periods’ for the modified Lorenz model,
the functionK(7) for 7= 75, and(ii) an improvement or a Eqgs.(5) and(6), for two different values oD. As well as for
poor synchronization between cells that depends on the cotthe time-correlated noise forcing, in this cdéalso shows a
pling and noise strength, as well as on the proximity to the
bifurcation pointR,,.

A. Resonant colored noise

The time-correlated Gaussian noise periodically modu-
lates the attractor dynamics. A resonance effect between the:
chaotic attractor time scale and the noise correlation tme
should be expected, since the power spectrum of the nois
cannot be considered to be flat within the frequency range of 2
interest,7~*. The dependence df on the time scale of the
attractor, and the fact that the values f are within the
main oscillation periods of the attractor, reinforce this point.

ation (t.u.)

(SDorreI

e

Resonant Ti

TABLE |I. Critical values ofq., N., andr, for which \(q, 7)
becomes negative. Fdt.=4, there is no value of, for which\ is
negative.

Diffusion Coefficient

dc Nc(k=1) 7 (t.U.) . .
FIG. 5. Dependence of the resonant time correlatignas a
0.50 2 0.045 function of the coupling diffusion coefficier for constant noise
0.33 3 0.158 dispersion. The line represents a nonlinear fitting of the obtained
0.25 4 o values ofrg to the equatioray+a,/ya,+D. Uncorrelated noise

and free ends were considered. Parameter vaNiest ando=3.
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FIG. 6. (a) Three-dimensional plot oK —K, as a function of
log,o7 and the control paramet& in Eq. (1), (b) sections of this
plot for three constant values &, and(c) dependence ok —Kj
with R for the limit case of white Gaussian noise- 10~ *. Param-
eter valuesN=4, ¢=3, andD=2. Free ends were considered in
the integration of Eq(1).

maximum or a minimum value for somé depending on the
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FIG. 7. Dependence of the resonant time correlatigfleft axis
and black squares dots fitted to a straight)linad the maximum
value ofK (right axis and dashed lines a function of the bifurca-
tion parameteR. The inset shows the dependence of the mean
oscillation periodT of a single Lorenz equation as a functionRf
Parameter valued=4, ¢=3, andD=2. Free ends were consid-
ered in the integration of Ed1).

is the period of time that the values §{t) are correlated,
then 7r must be lower thar.

Then, although the resonance or locking between the
natural frequency of the Lorenz oscillator and the time cor-
relation of the colored Gaussian noise can be explained by
this simple model depicted above, the enhancement or wors-
ening of the chaotic synchronization implies a different
mechanism.

B. Enhancement and worsening of the chaotic synchronization

Increasing the coupling strength between cells leads to an
improvement of the chaotic synchronization since cluster

coupling strength. Note that due to the single and well deformation (set of synchronized cells within the arjaig fa-
fined characteristic frequency of the forcing, the observediored. For a small number of cells, this effect is most notable
peaks are narrower than those obtained for the coloregls the number of possible different clusters diminishes as

Gaussian noise, Fig. 1. Besides, the valuer'cf 7, corre-
sponding to the maximum and minimum of the functidt (
—Kg)(7'") in Figs. 8a) and 8b) is equal to the mean oscil-

well, and therK tends to be smaller tha,. In Figs. 6 and
7, we showed that this behavior can be reversedR as-
creases. The maximum value Kf—K, was also found to

lation period of a single Lorenz cell for the selected set ofincrease withR, finally leading to a poor synchronization

parameters,T=0.61 t.u. The measured values af (or

(for R>49.5,K—Ky>0 at least within the neighborhood of

equivalentT) are greater than the corresponding values ofry in Fig. 7). This phenomenon can be explained in terms of

TR, as was shown in Fig. 7 for different values of the bifur-

cation parameteR. Since by definition the time correlatian

anon-off intermittencyeffect. Since in Eq(l) the bifurcation
parameteR is modulated by(t), the stationary probability

D=0.5

FIG. 8. Dependence df with
the forcing periodr’ for the modi-
fied Lorenz model, Eqs(5) and
(6), for two different values of the
diffusion coefficient; (@) D=0.5
and(b) D=2.0. Parameter values:
N=4 ando=3. Free ends were

-1 0 1

l09,,(%)

considered and ¢;#¢; Vi,]
=1,...N.
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to obtain values oR(t) =R+ &(t) smaller tharR,, where the  this paper. Nevertheless, asis increased, for a constant
attractor is not chaotic is given t[\ﬁ_l] value OfO', the effectiveamplitude of the noisé& = T0'2 in-
creasessee Eq(3)], which in fact suppresses the resonance

) ) effect as the attractor turns out to be completely contami-
PR(t)<R,)= 1 Rmex _ ( ) drR’, (7) nated by noise. This is the case for other systems such as the
2w - o2 ' Rossler model or the Hindsmarsch-Rose neuronal attractor,

among others.
Finally, one might speculate that the different behavior

where clearlyP diminishes with increasin®. observed for weak and strong coupling among cells when the

Synchronization between cells is improved when the trasystem is parametrically perturbed with time-correlated noise
jectories of each system become close to each other. Thigf low intensity could help in the laboratory, for example, to
dynamical behavior occurs f&(t) <R; the trajectories of get an idea of the coupling and synchronization strength in
the attractor tend to one of the two stable fixed points of theneural networks involved in hippocampal epileg4].
Lorenz system, and the distance between trajectories be-
comes smaller as increases K—0). In other words, the
trajectories corresponding to the attractors of each cell in the ACKNOWLEDGMENTS
array tend to be close to each other with a probability which _
is given by Eq.(7); i.e., the probability to have small values ~ We want to thank I.P. Marm and I. Sendia-Nadal for

; S ; : fruitful discussions. This work was supported by DGES and
of the distancu; —u;'_,| in Eq.(4) decreases witR. Then, "
the overall behavior of the functioK(7) should increase Xunta de Galicia under Research Grants No. PB97-0540

with R as was shown foK,,, in Fig. 7. Of course, this and No. XUGA-20602B97, respectively.
behavior can be modified by increasing the valuerpfince

then the decreasing rate Bfwith R diminishes which in fact _
leads to a smaller increasing rate Kf,,, with R. Then, by APPENDIX: TRANSVERSE LYAPUNOV SPECTRUM

controlling the values ofr andRit is possible to induce an  The effect of a colored noise on the chaotic synchroniza-
improvement of the synchronization between cells in the artjon of a ring consisting of chaotic Lorenz cells can be char-
ray. acterized by performing a linear stability analysis of the
small deviations around the sychronized s{dt@|. Thus, if
one considers a ring witN oscillators of dimensiomm the
V. CONCLUSIONS linear analysis of small perturbations will yield

Synchronization of linearly coupled chaotic cells has been Sx=H &x (A1)
shown to be enhanced or worsened by multiplicative colored
Gaussian noise. This phenomenon has been explained for the differences between the variables of contiguous os-
terms of an on-off intermittency effect that occurs when thecillators 6x, and where the Jacobian mattik of dimension
modulated bifurcation paramet®(t) =R+ £(t) crosses the (N m)Xx (N m) hasN blocks of dimensiormx m, that have
bifurcation point atR=R, that determines the stability of the same form as the linearized matrix for a single [e¢8],
the Lorenz system. Optimum values of the noise and couand a number of off-block-diagonal terms arising from cou-
pling strength have been obtained for enhanced array symling. The most convenient form of analyzing such a setting
chronization, and the effect of increasing number of cells inis through the use of the discrete Fourier transform, due to
the array was also discussed. The effect of local and uncothe circulant structure of matrid [47,48. What one obtains
related noises and the boundary conditions for solving Edis that the original problen{Al) becomes uncoupled in
(1) have also been investigated. terms of the Fourier transforny of the differencessx as
A locking between the time correlation and the time  follows:
scale of the attractor has been observed. Here the noise cor-
relation time competes with the time scale of the chaotic 7®=c® 5 (A2)
attractor to determine the realization and magnitude of the
resonance phenomenon. This resonance cannot take placevfhere C is the Fourier transform of H, #7®
the oscillators are not coupled. = (LUN) =5 ox;e?™IKN is the Fourier transform ox, and
These two phenomena depend on the way cells arghe C(K matrices take the form
coupled within the array as well as on the way the noise
enters in the differential equations. By adding noise to a —a a 0
suitable bifurcation parameter, it is possible for a given value c_| R+&M)—z —1+2D(g—1) —x
of the noise strength to visit regions of the phase space where - ’

the attractor is no longer chaotic, which in fact improves y X -b

synchronization. (A3)
On the other hand, the issue of the dependence of our

results on the characteristic time scale of the chaotic attractawith c,=cos(2rk/N) and k=0, ...,(N—1) the Fourier

deserves further comments. Those chaotic systems wittnodes. Here, global or space-correlated ng@ig¢ has been
longer time scales clearly need higher correlation times irused in the calculations in order to have a circulant structure
order to achieve a resonance effect like the one described fior the matrixH in Eq. (Al).
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The k=0 Fourier mode represents the uniform chaoticas a function ofjy may allow one to characterize the stability
synchronized state of the ring, and the stability of this stateéf the uniform synchronized state in a convenient way. An
can be characterized by analyzing the transverse spectrutiferesting remark is thak(q) should be symmetric with
corresponding to Fourier modes with 0. As the system of = T&Spect 10 the lineg=1/2 since for a giverN, C*¥ and
Egs. (1) is nonlinear, theC® matrices have nonconstant, © are the same matrices(=Cy-), implying the same
chaotically varying, coefficients. Thus, the stability is morePrOPEY for their spectra of eigenvalues.

conveniently analyzed through the corresponding LyapunO\/N The functionA(q) is obtained by using the procedure of

. e olf et al. [49]. The transverse Lyapunov exponents are
exponents calculated from tH@( matrices(A3), yielding  .iculated for each wave numbarfrom the C) matrices

the transverse Lyapunov spectryifiLS) [47]. The uniform  (a3) where the nonconstant coefficients are obtained from
modek=0 will be stable whenever this spectrum is nega-the integration of Eq(1) without diffusive coupling. Be-
tive. An instability will arise in the moment in which some sides, the colored noisgt) in Egs.(1) and(A3) is the same
transverse Lyapunov exponent becomes positive. Instead ak global noise is being considered. Another important point
determining the transverse Lyapunov exponent for eacko notice is that as,=1, the Lyapunov exponents corre-
couple k,N), a more practical procedure is to define thesponding to the uniform mode=q=0 are identical to those
reduced wave number=k/N as a continuous variable in the of the isolated(uncoupled chaotic system forced by the
range[0,1]. The highest transverse Lyapunov exponefd) noise&(t).
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